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Compensation of Arrhenius relaxation curves coming to an extrapolated focus point is observed for many 
materials, especially in thermally stimulated current or related relaxation studies of polymers. Here we 
compare typical thermally stimulated current thermal sampling (t.s.c.-t.s.) data which exhibit compensation 
phenomena, with simulated data. The simulations were constructed on the basis of different curves of 
apparent activation energies, E,, vs temperature, in an effort to represent a variety of possible experimental 
systems near a cooperative or high activation energy transition such as a glass transition (Ts). We show that 
compensation is universally observed for all simulated results, essentially independently of the nature of the 
cooperative transition, and proof is given that it is simply a result of mathematical manipulation of the 
Arrhenius equation in an under-determined system. The compensation temperature T, must be related to Tg 
because of the steep Arrhenius curves. The difference, T, - Tg, is indirectly related to the shape of the onset 
of glass transition as one approaches Tg from the low temperature side, but is not related to the ‘breadth’ of 
the main glass transition which is usually the region of interest, nor is it sensitive to the high temperature side 
of the transition. Correlating compensation with any physically observable quantity is ill-advised, for a 
variety of reasons discussed here. 0 1997 Elsevier Science Ltd. 
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INTRODUCTION the t.s.c.-t.s. method can resolve ‘cooperative relaxa- 

The study of thermally stimulated electrical processes in 
materials is of considerable interest. Dielectrical break- 
down of polymeric insulators is studied by thermally 
stimulated methods. Current technological advances 
include polymer electrets used for microphones and 
other sensing devices’, and polymeric battery materials 
and other electrical storage devices. The development of 
materials for these applications continues at a rapid 
pace, as does the understanding and characterization 
derived from thermally stimulated current (t.s.c.). One 
important factor in the enhanced interest in the field is 
the recent availability of a commercial automated t.s.c. 
instrument made by Solomat, Thermold, Stamford, CT. 

The t.s.c. thermal sampling technique (t.s.c.-t.s.) (also 
known as thermal windowing or fractional polariza- 
tions) has been applied to polymers, showing the 
capability of resolving complex dielectric transitions 
into narrow distributions of relaxations2-lo. T.s.c.-t.s. 
results and the relationship of the activated parameters 
to glass transition phenomena are somewhat con- 
troversia19-‘3. One relatively undisputed feature is that 

*To whom correspondence should be addressed 

tions’, e.g. those correspondin g,,t” high values of the 
apparent activation energy E, , even in the case of 
weak or overlapping relaxations. It should be noted that 
‘high’ E, relaxations almost always correspond to those 
transitions exhibiting curved Arrhenius plots, e.g. those 
following an empirical WLF or related dependence of log 
cf) with reciprocal temperature for data obtained using 
conventional relaxation methods such as a.c. dielectric. 
The high sensitivity of the t.s.c.-t.s. method is due in part 
to the low equivalent frequency of about lop3 Hz14 and its 
capability of applying controlled polarization depolar- 
ization sequences. In this report we compare simulated 
results with those for one representative and widely 
studied polymer glass, PMMA. Several studies of the 
glass transition region in PMMA have been reported 
or reviewed3~8-‘0~1~-‘6, including t.s.c.-t.s. studies of 
PMMA3&10,‘5. 

In the discussion of t.s.c.-t.s. data, one must address 
the issue of compensation because of its prevalence in the 
literature. This is still a controversial area, regarding 
interpretation of the t.s.c.-t.s. results, and compensation 
has been reported in the majority of t.s.c.-t.s. and 
thermally stimulated creep relaxation studies. Compen- 
sation, also called the ‘isokinetic’ effect17, has been 
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controversial for more than thirty years in its application 
to chemical kinetics” 19. Compensation is the linear 
relationship or ‘correlation’ between the apparent 
activation energy, E,, and the prefactor, log?, (or 
equivalently a correlation between AH3 and ASS from 
the Eyring analysis)“,“. As we see it, the controversy in 
chemical kinetics is similar to that in polymer relaxa- 
tions. We strongly support statements such as those 
made by Exner” who discussed the danger of attempting 
to correlate E, and log r. because they are not 
independent of each other: ‘Some authors were aware 
of a certain danger in such correlations, but the proper 
essence of the problem, that is, the mutual dependence of 
the quantities correlated, was not grasped”‘. Garn” also 
discusses the same problems in detail. Although sig- 
nificant effort over thirty years has been devoted to 
dismissing the validity of compensation’7-‘9. it is still 
prevalent in the materials relaxation literature. We 
present specific and graphical examples to prove that 
compensation of relaxation data has almost no physical 
meaning. 

Typically, when compensation is reported in the 
polymer literature it is because of the increase in E, 
near a glass transition or some other ‘cooperative’ 
transition. This is analogous to chemical kinetics. 
where the rate constants characterized by a rapid 
change in E, with temperature are the ones that 
compensate’*. Compensation is seen most dramatically 
when Arrhenius (or Eyring) relaxation curves can be 
extrapolated to a focus point in temperature-frequency 
space (e.g. Figure 1)’ 13. The focus point or compensa- 
tion point is defined by two adjustable parameters, 7c and 
T, in the Arrhenius representation (equation (1)). 
Empirically, the compensation ‘fit’ is quite good for 
some polymer relaxations8”0”“. This is unlike the case of 
the analysis of chemical rate constants. where the 
temperature range is sometimes very narrow’7.‘X and 
compensation may be solely due to ‘the propagation of 
experimental errors”“. For polymer relaxations the 
temperature range can be quite broad and the increase 
in E, quite strong, as is shown in Figure 1, leading 
to statistically ‘significant’ compensation’“. We empha- 
size that compensation cannot be related to any material 
property for the simple reason that it is purely a result of 
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Figure I Arrhenius curve of BFG relaxation times derived from t.s.c.- 
t.s. spectra for PMMA. The slope of each curve gives the values of EC, 
plotted in F&we 3. and the intercept gives In ‘T” 

mathematical manipulation of the Arrhenius or related 
equations, and the system is far too under-determined 
to meaningfully extract additional parameters such as 
T, and rc. Because compensation analysis is firmly 
entrenched in the t.s.c. (and thermally stimulated creep) 
literature, we will provide mathematical and graphical 
arguments below to illustrate why compensation is not 
meaningful. 

The compensation point is defined in frequency- 
temperature space by two phenomenological parameters: 
the compensation temperature T, and the compensation 
frequency or relaxation time, [.fi = 1/(27~~)]‘~. 

r. = rc exp(-E,/RT,) (1) 

This compensation equation suggests that, at the 
compensation point T,, all relaxations occur at a single 
relaxation time TV, although in a substance as hetero- 
geneous as a pol_Yomer glass this is an unlikely scenario. 
Studies by Read , experimentally examining the com- 
pensation ‘point’ in polypropylene*’ with low frequency 
mechanical measurements have refuted the idea of this 
unique relaxation at T, and r,. 

Substituting equation (1) into the Arrhenius equation: 

7 = r. exp(E,/RT) (2) 

gives 

r(T) = r,exp[&( l/T - l/T,)/R] (3) 

According to equation (l), the slope of a plot of ln(ro) vs 
E,/ R gives the reciprocal compensation temperature 
(- 1 /T,), and the intercept is related to the compensation 
frequency, ln(rJ. An analogous expression can be 
derived starting with the Eyring equation instead of the 
Arrhenius equation. 

For polymer relaxations studied by t.s.c.-t.s. various 
attempts have been made to relate compensation to 
material parameters. The relationship of T, with the 
coefficient of thermal expansion (Q’) for the polymer 
liquid above the glass transition temperature (T,) has 
been explored’0.2’. Although qualitative agreement was 
seen in describing T, by aI, the attempted comparison 
actually failed for a variety of reasons. Given the 
relationship that T, N Tg’o..23, van Krevelen’s24 observa- 
tion that Tp (in Kelvin) 1s equal to 0.2/a, explains why T, 
is approximately inversely proportional to aI. Other 
attempts to find a relationship between T, and the 
change in coefficient of thermal expansion from the 
glassy to the liquid state (Acu) also failed for a variety of 
reasons3.‘0”3, including a more fundamental one 
described below. 

EXPERIMENTAL 

The t.s.c. instrument was supplied by Solomat. Spectra in 
the t.s.c.-t.s. mode were obtained using the standard 
procedure indicated in Figure 22,3s10.25. The important 
aspect of the t.s.c.-t.s. experiment is the very narrow 
temperature window over which the sample is polarized 
relative to the standard global t.s.c. obtained by 
polarizing over the ‘entire’ temperature regiont4. For 
t.s.c.-t.s., first the polarizing field is applied for 4min at 
the polarization temperature T,_,With the field left on, 
the sample is cooled at 5”Cmm to Tr, - 5°C. At this 
point the field is removed and the sample allowed to 
depolarize for 2min at TP - 5°C. The sample is then 
quenched at 30”Cmin~’ with the field off to about 40°C 
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Figure 2 Schematic” of the t.s.c.-t.s. polarization sequence vs time, 
using narrow polarization temperature windows. The ordinate 
axis consists of polarization field strength (I?), temperature, and 
depolarization current (J) from top to bottom, respectively. See 
Experimental section for details of polarization times, polarization 
temperatures (T ), depolarization temperatures (Td) and quench 
temperatures (Top 

below Tp. The t.s.c.-t.s. depolarization current is then 
measured upon reheating at 7”Cmin-’ to values about 
40°C above Tr,. Essentially the same polarization 
sequence has been used in many previous reports213,613, 
and the resulting activated parameters are remarkably 
insensitive to small differences in the exact details of the 
polarization sequence. The t.s.c.-t.s. technique effectively 
detects only a narrow distribution of relaxations under 
the conditions we have chosen. 

RESULTS AND DISCUSSION 

Compensation is typically observed when there is an 
increase in E, (or - log ro, or AH$, or ASS or any other 
activated parameter) as one approaches Tg. The value of 
the compensation temperature T, is generally just above 
Tg for compensating relaxation curves taken near a glass 
transition. This is because the high values of E, 
associated with the glass transition generally lead to 
steep Arrhenius curves which naturally come to a focus 
slightly above Tg (e.g. Figure 1). 

For almost any increase in E, as one approaches a 
‘cooperative’ transition, we will show that compensation 
is universally seen for mathematical reasons, regardless 
of the breadth or shape of the glass transition. In the 
following, we arbitrarily choose E, as the activated 
parameter which we will use to discuss the phenomena, 
but it could as well be any one of the other activated 
parameters. The so-called Bucci-Fieschi-Guidi (BFG)26 
analysis of a single t.s.c.-t.s. spectrum gives rise to one 
Arrhenius curve of relaxation times 7. Using many 
choices of Tp, several of these curves can be generated as 
shown in the Arrhenius plot in Figure 1 for PMMA. The 
slope of each of these curves gives the values of E, 
plotted in Figure 3. Physically, the rate of increase in E, 
with Tp is believed to be somehow related to the onset of 
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Figure 3 Apparent activation energies vs polarization temperature 
obtained from the t.s.c.-t.s. method showing experimental data for 
PMMA and three arbitrarily chosen curves for simulation purposes. 
The glass transition region, as examined in terms of high E, cooperative 
relaxations, is broad and the values of E, maximize at about 378K, 
which is the peak glass transition for PMMA 
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Figure 4 ‘Compensation plot’ of ASS vs AH3 for experimental 
(PMMA) and simulated data. The linear dependence is an indication of 
the quality of the fit to the compensation equation. The experimental 
points not on the line are for data which are not expected to compensate 
(low and high temperature data). The theoretical data cover a range of 
values governed by the values of E, chosen for the simulation. The 
compensation parameters determined from the linear fit are listed on 
the plot 

the glass transition, i.e. the breadth of the glass transition 
as it extends to low temperatures613. For example, it is 
broad for poly(ethy1 methacrylate)” and PMMA (Figure 
3)8-‘o, leading to compensating lines over a wide range of 
Tp (Figure 1). 

The statistics of compensation are best judged by the 
linear dependencei0>i3” of log r. with E, (Figure 4) or, 
equivalently, the linear dependence of AH3 or ASS. The 
onset of the glass transition is abrupt for many polymers 
such as polycarbonate, leading to compensation over a 
narrow range of Tp2’. For the narrow transition 
materials T, occurs only a few degrees above Tg10y23~27, 
while for materials like PMMA T, is sometimes more 
than 50°C above T 8-‘123 (Figure 1). The ‘zero entropy 
prediction’ shown & Figure 3 is determined from the 
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rearranged Eyring’s activated states equationZx. compensation is observed, as is known from experiment. 

E, = AH3 + RT = RT[I + ln(k/h) + ln( TT)] + 7’AS$ 

= RT[24.76 + ln( TT)] + TAS$ (4) 

Knowing that the equivalent frequency of t.s.c. is fixed at 
about f = 5 x 10-3 Hz one can generate the line in 
Figure 3, which shows that Ea calculated assuming 
ASS = 0 is essentially linearly dependent on temperature 
(in Kelvin). It has been shown in numerous cases that the 
values of E, for low temperature non-cooperative 
relaxations follow the semi-empirical zero activation 
curve6~10.11.28 while those for cooperative transitions, 
including the glass transition, show large departures6 “. 

Now we use simulated data to prove that compensa- 
tion will occur whenever there is an increase in E;,. 
essentially independently of the nature of the increase in 
_& as one approaches a given transition. The linearity of 
typical log r. and E, experimental data is shown in 
Figure 4 for PMMA. To simulate compensation data, we 
arbitrarily choose three sets of Ea vs Tp curves (Figure 3), 
labelled simulated & curves #l, #2 and #3. Figure 5 
shows the seven simulated Arrhenius curves correspond- 
ing to ‘E, curve #l’ in Figure 3. These were calculated 
from the values of E, and Tp by first determining an 
intercept using the equivalent frequency of t.s.c. 
(7 = 1/(27rf) = 200s): 

The compensation plots corresponding to simulated 
&, curves #2 and #3 from Figure 3 are shown in Figure 6. 
The linearity is almost perfect over the compensating 
region, showing that compensation is almost perfect. The 
compensation fit is indeed quite universal for essentially 
any experimental cooperative or slightly cooperative 
relaxations that one could imagine, but this is an artefact 
of the strong mathematical interdependence of slope and 
intercept, and this interdependence becomes dominant 
for any significant increase of E, with temperature, as is 
the case with chemical rate constant analysis”. The 
analysis lacks physical meaning for this reason. For a 
gentler dependence of E, with temperature, compensa- 
tion will not fit the data as well. For example, consider a 
situation where E, vs T values fall on the ASS = 0 curve 
for ‘non-cooperative’ relaxations in Figure 3. In this case 
one can show that compensation is not well defined, 
although in some cases small experimental errors will 
lead to approximate compensation in the analysis of 
non-cooperative relaxation data, especially over narrow 
temperature ranges. This again illustrates the pitfalls of 
using empirical analysis. 

?I = (200s) x exp( -Ea/RTp) 15) 

Once 7. is calculated, then the Arrhenius equation can be 
used to generate the solid curves in Figure 5 using the 
seven indicated values of Ea. Extrapolated lines are 
forced through the compensation point in the figure. The 
linearity or goodness of fit of the ‘compensation plot’ is 
seen to be roughly comparable to that for actual 
experimental data (Figure 4). It should be noted that 
the values of E, used to generate the extrapolated curves 
in Figure 5 correspond to those with the ‘flattest’ 
dependence of E, on Tp (curve #1 in Figurr 3), so even 
with relatively weak simulated ‘cooperative’ relaxations 

In addition to the danger of attempting to make sense 
of compensation parameters in an under-determined 
system, one also must avoid falling into the related trap 
of trying to obtain more than one activated parameter 
from the analysis of the data. The problem is illustrated 
in Figurc 7, where one can see that the values of AS’S 
mimic those of AH$ as is known in the literature8”0,29. 
The same trend would be seen with I?, and - log 70. The 
reason for this is simple but not always well recognized. 
AG$ is always constrained to moderate values defined by 
equation (7) (also plotted in Figure 7, for example). Thus, 
if AH$ increases, then equation (6) shows that the 
value of AS$ must increase to counterbalance this. 
Thus, AH$ and ASS are highly dependent on each 
other, and only one of them need be chosen for analysis. 
The same argument applies to the Arrhenius analysis, 
where only E, or log 7. could possibly have any physical 
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Figure 5 Simulated relaxation times (solid curves) generated starting 
with the values of I?, and TP indicated by curve #I from Figure 3 (see 
text). The values of I?, used to generate the curves are indicated on the 
plot. The extrapolated Arrhenius lines (dashed) were generated using 
the compensation parameters indicated 
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Figure 6 ‘Compensation plot’ of ASI vs AHi for two sets of 
simulated data. The linear dependence is an indication of the quality of 
the fit to the compensation equation. The points which are not on the 
compensating line corresponding to E, curve #3 are for the lower 
temperature data, and are not expected to compensate because of the 
moderate rate of change of E, with T (see text). The theoretical data 
cover a range of values governed by the values of E, chosen for the 
simulation. The compensation parameters are listed on the plot 
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Figure 7 Eyring activation free energy (AGS), enthalpy (AH$) and 
entropy (ASS) vs temperature. The values of AH$ differ from the values 
of E, in Figure 3 only by a factor of RT, and show the same trend with a 
prominent maximum near Tg(= 378 K). Values of AS+ are calculated 
from the intercepts of Eyring plots of ln(TT) vs l/T and also show the 
same trend as AH+ (see text). The solid line is calculated using equation 
(7) and the individual points (x) are calculated using equation (6), with 
some small amount of imprecision 

significance. 

AG$ = AH$ - TASS (6) 

or, equivalently, 

AG$ = RT ln[TkT/h] = RT[23.76 + ln(TT)] (7) 

Note that T is constrained to about 200s because this is 
the equivalent frequency of the t.s.c. measurement. With 
the narrow range of 7 and T, the log term is almost 
constant, and AG$ can be approximated as being nearly 
linearly dependent on T as was discussed above (see also 
Figure 7). 

The basic fault of compensation analysis for relaxa- 
tions is that, whenever E, increases, log 7. must decrease 
because they are intimately related to each other by the 
Arrhenius equation due to the fixed time scale of 
the measurement (7 ~200s or f N 0.001 Hz). Thus, 
approximately independently of the nature of the rise 
in E, with T (Figure 3), compensation is universally seen 
for this mat R ematical reason in the vicinity of ‘coopera- 
tive’ relaxations. Because compensation analysis is 
purely mathematical, its occurrence is a natural result 
of the increase in E,, and not its cause, on the low 
temperature side of the cooperative transition. 

The compensation temperature T, must be related 
to Tg because of the steep Arrhenius curves. The 
difference T, - Tg, is indirectly related to the sharpness 
of the onset of the glass transition as one approaches 
Tg from the low temperature side, but T, - Tg is not 
related to the ‘breadth’ of the main glass transition 
extending past this onset region. The onset region is in 
many cases only a small part of the overall phenomena 
of interest, and is in many cases independent of crystal- 
linity and phase morphology, which explains why 
Lacabanne and coworkers found that Tc - T, 
was independent of crystallinity in PET12)23 and 
PEEK23>30, while other techniques clearly showed that 

the breadth of the main glass transition was increased. 
An alternative approach was applied to the t.s.c.-t.s. 
data for PEEK and related systems31, like that applied 
to PMMA in Figure 3, where the entire broadened 
glass transition regions are quantified in terms of their 
‘cooperative’ relaxations. These t.s.c.-t.s. results were 
shown to be quantitatively consistent with those from 
other thermal analysis techniques31, whereas compen- 
sation analysis makes little contact with other relaxa- 
tion techniques for the reasons discussed above. We 
take the view that those analyses which are simpler, 
less empirical, and make better contact with standard 
analysis of thermal and relaxation data are the 
preferred ones. We also feel that the experimental 
results and conclusions thus derived could be judged 
more easily for their consistency and relevance 
throughout the literature if an essentially mathematical 
treatment such as compensation analysis were aban- 
doned. 
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